473 research outputs found

    A Quantum Probability Driven Framework for Joint Multi-Modal Sarcasm, Sentiment and Emotion Analysis

    Full text link
    Sarcasm, sentiment, and emotion are three typical kinds of spontaneous affective responses of humans to external events and they are tightly intertwined with each other. Such events may be expressed in multiple modalities (e.g., linguistic, visual and acoustic), e.g., multi-modal conversations. Joint analysis of humans' multi-modal sarcasm, sentiment, and emotion is an important yet challenging topic, as it is a complex cognitive process involving both cross-modality interaction and cross-affection correlation. From the probability theory perspective, cross-affection correlation also means that the judgments on sarcasm, sentiment, and emotion are incompatible. However, this exposed phenomenon cannot be sufficiently modelled by classical probability theory due to its assumption of compatibility. Neither do the existing approaches take it into consideration. In view of the recent success of quantum probability (QP) in modeling human cognition, particularly contextual incompatible decision making, we take the first step towards introducing QP into joint multi-modal sarcasm, sentiment, and emotion analysis. Specifically, we propose a QUantum probabIlity driven multi-modal sarcasm, sEntiment and emoTion analysis framework, termed QUIET. Extensive experiments on two datasets and the results show that the effectiveness and advantages of QUIET in comparison with a wide range of the state-of-the-art baselines. We also show the great potential of QP in multi-affect analysis

    Quantum-Inspired Interactive Networks for Conversational Sentiment Analysis.

    Get PDF
    Conversational sentiment analysis is an emerging, yet challenging Artificial Intelligence (AI) subtask. It aims to discover the affective state of each participant in a conversation. There exists a wealth of interaction information that affects the sentiment of speakers. However, the existing sentiment analysis approaches are insufficient in dealing with this task due to ignoring the interactions and dependency relationships between utterances. In this paper, we aim to address this issue by modeling intrautterance and inter-utterance interaction dynamics. We propose an approach called quantum-inspired interactive networks (QIN), which leverages the mathematical formalism of quantum theory (QT) and the long short term memory (LSTM) network, to learn such interaction dynamics. Specifically, a density matrix based convolutional neural network (DM-CNN) is proposed to capture the interactions within each utterance (i.e., the correlations between words), and a strong-weak influence model inspired by quantum measurement theory is developed to learn the interactions between adjacent utterances (i.e., how one speaker influences another). Extensive experiments are conducted on the MELD and IEMOCAP datasets. The experimental results demonstrate the effectiveness of the QIN model
    • 

    corecore